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Threedimensional reconstruction of  geographic zones relief  is a process with wide 
applications in GIS type products, especially those that implement models for simulation of  
various phenomenons that may affect a specific geographic area (floods, terrain slips etc). 
By threedimensional reconstruction of geographic area relief starting from serial sections, 
we understand regenerating of the area surface in the form of a set of connected triangles. 
The results of the reconstruction process may be introduced in variuos threedimensional 
vizualization programs, or used as an input for relief analysis programs. 
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1. INTRODUCTION 
 
1.1 Phases of relief reconstruction process 
 

During the process of threedimensional reconstruction 
of a geographic zone relief, there may be identified 
more stages, each stage representing a separated 
problem: 

 
Input data processing stage.  In this stage, the serial 
sections are read from a storage device or from a 
speficic interface, as a set of level curves, with 
different altitudes. The format this data is stored 
depends of each program. 
 

From structural point of view, a level curve is 
represented as a bidimensional set of points (each 
point with X and Y coordinates), with a third 
coordinate Z, common to all points in the set. The 
order of the points inside is  level curve, from 
geometrical point of view, a level curve behaving 
as a polygon. 
 
For easying the execution of the following phases, 
the input data is usually ordered during this phase 
in different manners, like the following: 
 

- sorting the level curves by altitude 
 

 
1

mailto:neuron@mailbox.ro
mailto:Mtudor@mailbox.ro
mailto:catalin_tudose@yahoo.com


 

- reindexing of the points inside a level curve, such 
as the polygons have the same orientation (clockwise 
or counterclokwise), and the starting point should be 
an extreme point (e.g. the most left point). 

 
Serial sections connection phase. This phase 
determines the ajacences between serial sections, 
based on the altitude of each serial section and on the 
overlapping of the level curves in bidimensional 
plane.  
 
The result of this phase is a connection graph, 
composed of one or more connection trees, the root 
nodes of each tree representing the base sections of the 
relief. The son nodes of a given node represent the 
serial sections of immediatly superior altitude, 
overlapping the current section. 

 
Connection analysing and processing phase. After 
setting the connection graph, each tree node is treated 
separately, and decided if it is processed in its original 
form, or if it need adiitional transformations before 
introduced in the final processing phase.  
 
In case a node has a single son in the connection 
graph, we say that the specified node presents a simple 
branching. Normally, such a connection doesn’t need 
adiitional processing before it is passed to the final 
processing stage. 
 
In case a node has more than one son, we say that the 
specified node presents a multiple branching. The 
reconstruction algorithms require special solution to 
build triangulated surfaces in this case.  A solution for 
simple cases was proposed by insertingn intermediate  
points at a level halfway between the two sections, 
and making it a single contour (Christiansen and 
Sederberg 1978). More complex situations demand 
that a polygon be inserted between the multiple 
contours to complete the surface (Ekoule et al. 1991, 
Meyers et al 1992).  
 
Other solutions include those suggested by Shantz 
(1981) and Zyda et al (1987). Which interpolate new 
contours to decompose the problem to a series of one-
to-one correspondences. For a one-to-many 
connection to be passed to the final stage, the 
connection needs to be split in more simple 
connections. The procedure consist in splitting the 
base level curve of the connection in more curves, 
each of them surrounding, from geometrical point of 
view, only one of the level curves represented by the 
son nodes. 
 
As a result of this phase, the connectoin graph 
transformed into an independent set of connections, 
each connection beeing determined by a base curve, of 
lower altitude, and a top curve, of higher altitude. Due 
to the operations exeuted during this phase, the base 
curve may or may not be one of the input sections read 
during the first phase. 
 

This way, each particular connection gets the form 
of a generalysed cone-body, featured by a large 
base, a small base, and a lateral surface. 

 
Latteral surface tiling phase. During this final 
phase, the latteral surfaces of the generalysed cone-
bodies is aproximated by a set of connected 
triangles. The sets of triangles for each particular 
connection are then added to form the complete set 
of triangles that represent the aproximation of the 
relief surface, this being the final result of the three-
dimansional reconstruction process. 
 
There have been a large number of proposals for 
the resolution of the tiling problem. Initial graph 
solutions  (Fuchs et al 1977, Keppel 1975) used an 
optimal approach, based on graph theory, and gave 
a triangulation that best met a given criterion. 
Refinements to this approach, to improve upon 
performance have been suggested by Sloan and 
Painter (1988). The ‘shortest span’ method 
(Christiansen and Sederberg 1978) is one much 
heuristic, which looks for the shortest of the two 
possible edges between points in adjacent 
coontours to create a triangular mesh. Heuristic 
algorithms were also been proposed by Ganapathy 
and Dennehy (1982).  
 
The heuristic algorithms require contours to be 
aligned an similar in shape to work succesfully. On 
the other hand, the complex algorithms give better 
results in most of the cases, but the computational 
effort is significantly bigger. 
 
Each of the four three-dimensional reconstruction 
process caracteristic phase is featured by a series of 
specific algorithms. The result of the reconstruction 
process is not unique, but depends of the algorithms 
applied at each step of the process. There are 
algorithms with very good results, but with a very 
large computational effort, and there are algorithms 
with good speeds, but with worse reuslts.  
 
Generally speaking, the algorithms for the first two 
phases of the reconstruction process do not rise 
problems in their developing, the spccial cases that 
may appear during the execution of theese phases 
and that may harden the process, are very few. 

 
In turn, the third and the fourth stage of the 
reconstruction process are featured by a big number 
of special cases, that may rise many problems in 
developing of the algorithms.   
 
There are many algorithms for splitting a complex 
connection into multiple simple connections, an for 
the tiling of latteral surfaces of a connection. A part 
of theese algorithms a restricted for a given relief 
configuration, becoming unusable for special cases 
where those restrictions are not met. 
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The exceptions that may affect the validity or 
invalidity of an algorithm may be of he following 
types: 
 
- The polygons that represent the serial sections may  
not be convex. 
 
- Some points of  a higher level polygon of a given 
connection may not have direct visibility to any of the 
points of the lower level polygon. In the same way, 
some points of  a lower level polygon of a given 
connection may not have direct visibility to any of the 
points of the higher level polygon. By direct visibility 
of one point to another, one should understand that the 
segment that connects those two points must not 
intersect any of the segments of the two polygons that 
form the connection. 
 
- The polygons on the superior level of a connection 
may not have direct visibility to each other, their 
direct visibility beeing affected by the concavity of the 
base polygon. 
 
- various other exceptions. 
 
The relief forms that do not meet any of theese 
exceptions may be considered simple relief forms. For 
treating this type of relief forms, there were developed 
a series of very efficient algorithms from 
computational effort point of view (linear or 
logarythmic complexity). Treating theese cases do not 
represent the object of the current document. 
 
The other relief forms may be considered in the 
complex relief forms category. Treating theese cases 
may need more complex algorithms, which may need 
a larger computational effort (square or even cubic 
complexity). 

 
In the current article, there will pe presented two such 
kind of algorithms, the ones implemented in the 
“Neuron Relief Reconstruction” program, developed 
by Neuron company: 
- a specific algorithm for treating multiple branching 
and splitting them into more simple branchings. 
 
- an algorithm for treating the tiling problem of the 
latteral surfaces. 

 

 
Fig. 1 The polygons on the superior level of a 

connection may not have direct visibility to each 
other 

 
Fig. 2 No point of polygon D has direct visibility to 

aby of the points of the base polygon. 
 

2. ALGORITHM FOR TREATING  
MULTIPLE BRANCHING 

 
During the three-dimensional reconstruction 
process, a series of particular cases that may affect 
the running of the third phase, may appear. From 
theese cases we enumerate: 

 
- The polygons on the superior level of a 
connection may not have direct visibility to each 
other, their direct visibility beeing affected by the 
concavity of the base polygon. This case is 
represented in figure 1 
 
- Some polygons on the superior level do not have 
direct visibility to any of the points of the polygon 
on the inferior level, due to the position of the other 
polygons from the higher level. (Fig 2, polygon D). 
 
In this chapter, it will be presented an algorithm for 
treating multiple branching, with applicability in a 
very large area of particular cases. 

 
The algorithm presented in this chapter introduces 
the notion of generalysed halfplane. 

 
 
2.1 Double branching case 
  

For algorithm description, we consider at the first 
step the case of a double branching (Fig. 3), this 
algorithm being extended, at the second step, to 
multiple branching cases. 
 
 

 
Fig. 3. A simple case of double branching 
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Fig 4 The two polygons B and C, the delimitation 
segments PR and QS, and their middles M and N. 

 
The curves B and C have the same altitude, and are 
placed on the level immediately supperior to the level 
of curve A. 
 
Before proceeding to the execution of the algorithm, 
all the polygons involved in the process must be 
ordered in the same way (clockwise or 
counterclockwise), and the starting point must be 
placed at an extermity of the polygon (e.g. the most 
left position). 
 
The first step of this algorithm is the determination of 
the delimitation straight lines D respectively E, as 
beeing the two straight lines that connect one point 
from each polygon, without intersecting any other of 
the segments of the two polygons.  
 
We do not insist in describing the algorithm for 
determining thees two lines. The simplest way (but not 
the most efficient from computational effort point of 
view), is analysing all possible segments that may be 
obtained fromo one point of each polygon, and 
verifying the property of a delimitation line.  The only 
condition for this algorithm to work, is that the 
surrounding convex polygons of the two level curves 
should not be contained one in the other. 
 
With theese line determined, only the useful parts of 
them will be kept. The useful part of a delimiting line 
consist of the segment between the points of the two 
polygons (PR, respectively QS, Fig 4) 
 
There may be two cases that may determine an easy 
different way in later steps of the algorithm: 
 
- the two delimitation lines are paralel 
 
- the two delimitation lines intersect in a point O 

 
This way, the two polygons B, respectively C, were 
split each of them into two portion: 
 
- one exterior portion, which have the property that no 
point of this portion has direct visibility to the other 
polygon. 
 

 

 

 
Fig 5 The beginning of the frontier delimitation 

problem. The TU segment was chosen and its 
middle was selected as next frontier point. 

 
- one interior portion, with the property the points 
on the convex surrounding have visibility to at least 
one point of the other polygon. 
 
Other two important points are the middles of the 
two delimitation segments, M, respectively N. 

 
The second step of this algorithm consist of 
generating of a segmented line between theese two 
points (M and N), that keeps an equal distance to 
the points of the two polygons, in other words, to 
function as a frontier between polygons B and C). 
For this, the two interior portions of the polygons 
are followed from points P and R to points Q and S. 
As a first segment, it is considered the segment PR. 
The middle of this segment in placed as the first 
point in the point set of the frontier. 
 
We consider T, respectively U, the next points on 
the interior portions pf the polygons B, respectively 
C. The next segment is chosen between segments 
PU, TR, respectively TU. The criteria of choosing 
the next segment depends of the parallelism of the 
D and E straight lines. In case 1 (the two lines are 
parallel), the segment that forms the smallest angle 
with any of the of the two lines is chosen. In case 2 
(the two lines intersect in O point), the segments 
that forms the smallest angle with the O point is 
chosen. The middle of chosen segment is 
introduced as the next point of the frontier. 

 
 

Fig 6 The finalization of the separating process. 
The M to N segmented line is completed with 
two halflines, determining two generalysed 
halfplanes. 
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This action is repeated until Q and S points are 
reached, the middle of QS segment (the N point) 
beeing the last point of the frontier between the two 
polygons. The segmented line, obtained this way, is 
completed with two halflines, starting from points M, 
respectively N, with the direction ortogonal on PR, 
respectively QS, and with the sense against the 
segmented line. This way, we obtain an infinite length 
frontier line, that splits the plane in two generalysed 
halfplanes, one containing the B curve, and the other 
containing the C curve.  
 
The last step of this algorithm is computing the 
intersection of the base curve A with each of the two 
halfplanes, spliting it into two polygons, one 
surrounding curve B and the other surrounding curve 
C, in a bidimensional perspective. If the frontier line 
intersects the base polygon in more than one contigous 
portion, it can be demonstrated that only one of this 
portions could determine the splitting the base 
polygon in two parts such as one surrounds polygon B 
and the other polygon C.  

 
 
2.1 Multiple  branching case 
 
The same algorithm described in the previous 

chapter may be applied, with small modifications, in a 
multiple brnaching case, with N polygons on the 
superior level. The algorithm applies in N-1 major 
steps, the result of each major step, being the frontier 
that separates one polygon from the others. The 
current polygon of a major step will not be included in 
the following steps, as well as the portion of the base 
polygon that was determined for the current polygon. 
In other words, each major step operates with a 
smaller base polygon and with a number of top 
polygon smaller by 1 from the previous steps. This 
way, the last step will operate with only two top 
polygons, and with a base polygon that surrounds only 
those two polygons, and neither of the other top 
polygons. 
 
The algorithm for multiple branching is the following: 
 
- the whole base polygon is the reference base 
polygon for the current major step 
- for each polygon C0 to CN-2 on the superior level 

- the Ci polygon is chosen as reference top polygon 
for the current major step 
- for each polygon Ci+1 to CN-1 , the frontier that 
separates it from the reference top polygon; the 
generalysed halfplane that contains the Ci polygon 
is also determined 
- all the halfplanes obtained at this major step that 
contain the Ci polygon will be intersected to form 
another generalysed half plane, that also contains 
the Ci polygon. The intersection between this 
halfplane and the base polygon forms the base 
polygon portion that srrounds the Ci polygon. 
- this base polygon portion is extracted from the 
reference base polygon  

3. ALGORITHM FOR TILING 
THE LATTERAL SURFACES 

 
In the process of latterals surfaces tiling, a series of 
particular cases that may affect the algorithm may 
appear: 
 
- The polygon from higher level is not complettely 
surrounded by the base polygon (Fig. 7) 
- The two level curves (the top and the base one) 
have points that do not have direct visibility to any 
of the points of the other polygon (Fig 8). 
- One of the two polygons has a very long edge, 
compared to the edges on the same side of the other 
polygon (Fig. 9) 
 
In first exception case, regardless of the solution, 
the result will contain triangles oriented down with 
their front side (the normal of the triangle plane has 
a negative Z component) 
 
In the second exception case, the inconvenient may 
be eliminated by inserting additional points 
between the top and base planes. The algorithm of 
inserting and treating theese points is described 
later in this chapter. 
 
The third exception case may determine some 
algorithms to select improper triangles in the tiling 
process. The solution could be the splitting of the 
long edge into smaler edges, thus inserting points in 
the polygon without affecting its look. 
 

 

 
 

Fig 7 The B polygon from (higher level is not 
complettely surrounded by the A polygon 
(lower level) 

 

 
Fig. 8 The highlighted portion on the A polygon 

doesn’t have direct visibility to any of the point 
of the B polygon 
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Fig. 9  One edge of the A polygon is very long 

compared to the segments of the B polygon 
 
The algorithm described in this section is a cubic 
complexity algorithm, that assures validity to a great 
number of special cases. 
 
The first step of this algorithm is creating a list with 
all possible segments formed by one point of each 
polygon, and sorting this list after the length of the 
segments, such as the smallest segments be first. The 
second step represents the selecting from theese M*N 
segments of a number of at most M+N segments, for 
the tiling process. The selection algorithm if the 
following: 
 
- The output segments list starts with 0 segments. 
 
- All the segments of the input list are analysed in the 
order of the length. A segment may be inserted in the 
output list if it doesn’t intersect any of the two 
polygons segments, and neither any of the segments 
already inserted in the output list. 
 
- The process stops in the moment the output list has 
M+N elements, or when the input list reaches the end 
(the particular case where there are zones without 
visibility to the other polygon of the connection).  
 
In the third step of the algorithm, the succesion of the 
segments on the latteral surface must be determined, 
and the triangles are generated from consecutive 
segments with a common point.  
 

 
 

Fig 10 The cornering problem 
 
In this phase all the points of the two polygons are 
analysed if they appear or not in the output segment 
list. If a sequence of points fom one or another 
polygon is missing, the triangle generated with 

surrounding points of those regions is hold as 
temporary. We may say that we found a cornering 
case.  
 
For example, in Fig 10, the sequence P1 to P4 do 
not have visibility to the B polygon, so, no 
segments including theese points will be inserted in 
the output list of segments. The surrounding points 
of this sequence are P0, respectively P5.  The 
triangle C-P0-P5). The weight center of this 
triangle (D) is used as an auxiliary point for further 
processing. The triangles CP0D and CDP5 are 
included in the triangle list, and visibility of the 
points P1 from P5 is reevaluated from the point D. 
The points P1 and P4 become visible from D, so the 
triangles DP0P1, DP1E, DEP4 and DP4P5 are 
added to the triangle list (E is the weight center of 
DP1P4). At the next iteration with point E, we will 
se also the points P2 and P3, and the triangles 
EP1P2, EP2P3 and EP3P4 are found. The altitude 
of weight centers will be at one-third from the base 
and two-thirds from the top of the triangles where 
they are defined. 
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